
  

Optimization hints for Intel Xeon Phi

F. Salvadore - Cineca

HPCS 2014



  

In principle the main advantage of using Intel MIC 
technology with respect to other coprocessors is the 
simplicity of the porting

Programmers may compile their source codes 
based on common HPC languages (Fortran/ C / 
C++) specifying MIC as the target architecture 
(native mode)

Is it enough to achieve good performances? By the 
way, why offload?

Usually not, parallel programming is not easy
A general need is to expose parallelism

Performance and parallelism

HPCS 2014



  

GPU paradigms (e.g. CUDA):
Despite the sometimes significant effort required 

to port the codes...
...are designed to force the programmer to 

expose (or even create if needed) parallelism
Programming Intel MIC

The optimization techniques are not far from 
those devised for the common CPUs
As in that case, achieving optimal performance is 

far from being straightforward
What about device maturity?

GPU vs MIC

HPCS 2014



  

Let us recall 3 basic features of current Intel Xeon 
Phi

Peak performance originates from “many slow but 
vectorizable cores”
clock frequency x n. cores x n. lanes x 2 FMA Flops/cycle

1.091 GHz x 61 cores x 16 lanes x 2 = 2129.6 Gflops/cycle

1.091 GHz x 61 cores x 8 lanes x 2 = 1064.8 Gflops/cycle

Bandwidth is (of course) limited, caches and 
alignment matter

The card is not a replacement for the host 
processor. It is a coprocessor providing optimal 
power efficiency

Xeon Phi very basic features

HPCS 2014



  

In general terms, an application must fulfill three 
requirements to efficiently run on a MIC

(1) Highly vectorizable, the cores must be able to 
exploit the vector units. The penalty when the code 
cannot be vectorized is very high

(2) high scalability, to exploit all MIC multi-threaded 
cores: scalability up to 240 processors 
(processes/threads) running on a single MIC, and 
even higher running on multiple MIC

(3) ability of hiding I/O communications with the host 
processors and, in general, with other hosts or 
coprocessors

Optimization key points

HPCS 2014



  

In recent Intel compilers, vectorization is enabled by 
default

May be turned off by explicit options

The compiler must be able to detect the possibility to do that

The essential requirement is the possibility to unroll the 
loop having the different iterations performed simultaneously 

Some critical conditions
If the loop is part of a loop nest, it must be the inner loop unless it 

is completely unrolled or interchange occurs (use -O3)

Straight-line code: no jumps or branches but masked assignment 
allowed

Countable loop: number of iterations must be known when starting 
(even if not at compile time)

No loop dependencies: iterations must be performed in parallel

Vectorization: auto

HPCS 2014



  

Writing “clean” code is a good starting point to have the code 
vectorized

Prefer array indexing instead of explicit pointer arithmetic

Use restrict keyword to tell the compiler that there is no array aliasing

Excerpt from a real code the compiler manages to vectorize:
REAL * __restrict__ anspx=an+spxoff;

REAL * __restrict__ ansmx=an+smxoff;

...

for(ix=istart; ix<iend; ix++) {

    as = anspx[ix]*JpxWO[ix] + anspy[ix]*JpyWO[ix] + 

         anspz[ix]*JpzWO[ix] + ansmx[ix]*JmxWO[ix] + 

         ansmy[ix]*JmyWO[ix] + ansmz[ix]*JmzWO[ix] + 

    ...

}

Vectorization: arrays and restrict

HPCS 2014



  

Using array notation is a good way to guarantee the compiler 
that the iterations are independent

In Fortran this is consistent with the language array syntax
a(1:N) = b(1:N) + c(1:N)

In C the array notation is provided by Intel Cilk Plus
a[1:N] = b[1:N] + c[1:N]

Beware:
The first value represents the lower bound for both languages

But the second value is the upper bound in Fortran whereas it is the 
length in C

An optional third value is the stride both in Fortran and in C

Multidimensional arrays supported, too

Vectorization: array notation

HPCS 2014



  

Another opportunity is forcing vectorization by means of 
directives

The programmer guarantees the possibility to vectorize
Until a few years ago, only compiler dependent directives 

available
#pragma ivdep

Instructs the compiler to ignore assumed vector 
dependencies (proven dependencies area not ignored)

#pragma vector always

Instructs the compiler to override any efficiency heuristic 
during the decision to vectorize or not

Vectorization: directives

HPCS 2014



  

Intel took leadership in defining OpenMP 4.0 SIMD 
extensions

Several tuning options available

#pragma omp simd

Applied to a loop

#pragma omp declared simd

Applied to a function to enable the creation of a version that 
can process arguments using SIMD instructions from a single 
invocation from a SIMD loop

Vectorization: OpenMP 4.0 simd

HPCS 2014

Thread Level 
Parallelism

SIMD parallelism

Auto Parallel Auto vectorization

OpenMP threading OpenMP 4.0 simd

Posix threads Vectorization intrinsics

Ease of use

Programmer control



  

IMCI intrinsics
The coding become hard
And  the code is no more portable to common CPUs

for(i=0; i<N; i++) 

     A[i] = A[i] + B[i];

for(i=0; i<N; i+=16) {

    __mm512 Avec = mm512load_ps(A+i);    

    __mm512 Bvec = mm512load_ps(B+i);

    Avec = mm512add_ps(Avec, Bvec);

    _mm512_store_ps(A+i,Avec);

}

The arrays float A[N] and float B[N] are aligned on a 64-byte 
boundary

Variables Avec and Bvec are 512=16 x sizeof(float) bits

Vectorization: Phi intrinsics

HPCS 2014



  

MPI and OpenMP are the most common choices
Up to 60 MPI processes are reasonable for a single MIC
And 1 MPI process per MIC may be an interesting choice
The optimal choice between MPI and OpenMP depends 

on the application 
MPI Programming models, basically three configurations

Co-processor only (native mode)
MPI+Offload
Symmetric

Exploiting cores

HPCS 2014



  

MPI communications are heterogeneous. Performances 
strongly vary!

From some tests on the Eurora cluster at Cineca

Experimenting heterogeneity

HPCS 2014

PingPong SendRecv

CPU-CPU same node 5-11 5-22

CPU-CPU diff node 2.9 5

MIC-MIC same node 0.9 1.8

MIC-MIC diff node 0.9 1.6

CPU-MIC same node 5.9 11

CPU-MIC diff node 1.45 1.65



  

Experimenting heterogeneity/2

HPCS 2014



  

When running in symmetric mode, load balancing is a critical 
issue

Usual MPI decompositions assume homogeneous 
computing units

Mixing MPI and OpenMP may help
Assign a different number of MPI processes to host and 

coprocessor
Exploit the full machine potential by means of OpenMP 

threads
E.g.
Host: 4 MPI ranks + 4 OpenMP threads
MIC: 8 MPI ranks + 30 OpenMP threads

Symmetric mode: load balancing

HPCS 2014



  

Several threading models available
OpenMP
Fortran (2008) DO concurrent
Intel Cilk Plus
Intel Threading Building Block
Intel Math Kernel Library

OpenMP has clear advantages wrt portability
In offload mode, it is possible (required) to tune both the host 

and coprocessor parameters (e.g. number of threads)

Threading models

HPCS 2014



  

Placement of threads on MIC cores and hardware threads
The basic configuration is 
controlled by the variable
KMP_AFFINITY
Additional advanced 
settings are possible too

Scatter

Balanced

Compact

Thread Affinity

HPCS 2014



  

The impact of affinity on performance may be very                
   significant

From a realworld example (3d-stencil code)

Affinity and performances

HPCS 2014



  

As recalled, the number of threads for each MPI process 
may become large (up to 240)

From different tests, it turns out that collapsing OpenMP 
loops results in improved performances

From a realworld example (3d reacting Navier-Stokes 
equations)

Collapse loops

HPCS 2014

MIC OMP threads no-collapse collapse

1 108.7 109.26

16 7.67 7.52

30 5.24 4.51

60 3.08 2.51

120 2.60 1.87

180 1.89 1.77

240 2.20 1.67



  

“Dividing a loop into a set of parallel tasks of a suitable 
granularity. In general, tiling consists of applying multiple 
steps on a small part of a problem instead of running each 
step on the whole problem one after the other. The purpose 
of tiling is to increase reuse of data in caches”

#pragma omp for collapse(2)
for (int z = 0; z < nz; z++) {
   for (int y = 0; y < ny; y++) {
      for (int x = 0; x < nx; x++) {

#define YBF 16
#pragma omp for collapse(2)
for (int yy = 0; yy < ny; yy += YBF) {
   for (int z = 0; z < nz; z++) {
       int ymax = yy + YBF;
       if (ymax >= ny) ymax = ny;
       for (int y = yy; y < ymax; y++) {

Tiling

HPCS 2014



  

“Depending on the memory patterns, possible TLB cache 
thrashing must be considered with care

Padding between allocated arrays may be a good solution

The problem may be difficult to analyze for non-HPC experts

From a spin glass simulation code, the spin updating time 
has been measured against the padding pages between 
arrays

TLB cache thrashing

HPCS 2014

Padding pages Time per spin

0 1.458

1 0.737

4 0.764

8 1.222

16 1.537

32 1.543



  

When getting unexpected performance results or whenever 
there is the need to have a deep understanding of the 
measured times, using Intel Vtune profiler is a good idea

From the previous TLB thrashing example

Intel VTune

HPCS 2014



  

DA is  a method to force the compiler to create data objects 
in memory on specific byte boundaries. This is done to 
increase efficiency of data loads and stores to and from the 
processor.

For MIC memory movement is optimal when the data 
starting address lies on 64 byte boundaries

Two steps are needed
(1) Align the data

float A[1000] __attribute__((aligned(64)));

buf = (char*) _mm_malloc(bufsizes[i], 64);

real, allocatable :: a(:)

!dir$ attributes align:64 :: a

Data alignment/1

HPCS 2014



  

(2) Use pragma/directives and clauses to tell the compiler 
that the accesses are aligned

For an i-loop that has a memory access of the form 
a[i+n1], the loop has to be structured in such a way that 
the starting-indices have good alignment properties.

  __assume_aligned(a, 64);

  __assume(n1%16==0);

  __assume(n2%16==0);

  for(i=0;i<n;i++) { 

   // Compiler vectorizes loop with all aligned accesses

    X[i] += a[i] + a[i+n1] + a[i-n1]+ a[i+n2] + a[i-n2];

  }

Data alignment/2

HPCS 2014



  

Starting with Composer XE 2013 Update 1 compiler, 
streaming stores instructions are generated under certain 
conditions

Instructions intended to speed up the performance in the 
case of vector-aligned unmasked stores in streaming 
kernels where we want to avoid wasting memory 
bandwidth by being forced to read the original content of 
an entire cache line from memory when we overwrite their 
whole content completely

Heuristics may be not sufficient: user can provide hints to 
the compiler, e.g.
#pragma vector nontemporal A 

where A[i]=... is the store inside the loop

Streaming store and prefetch

HPCS 2014



  

Why offload mode?
Cons

The porting is much more complex than to native mode

And the programmer must take care of host-coprocessors data 
exchanges which may be disastrous wrt performances

The symmetric mode allows to use both host and MIC at the same 
time

Pros
it is also reasonable to assume that, the host being in charge of 

MPI calls (as it happens in offload mode), the MIC is free to execute, 
at its best, the computing intensive part of the code without wasting 
time in managing the communications

Native vs Offload

HPCS 2014



  

Consider a finite difference time domain code parallelized 
by standard domain decomposition. At each step:

(a) update boundary and bulk values 
(b) exchange ghosts with neighboring processes

MPI optimizations: FDTD

HPCS 2014



  

MPI patterns allow to overlap computations with 
communications (hiding the communication cost)

Standard CPU pattern using MPI non blocking functions 
(available for MIC native mode as well)

Update boundary
Exchange ghost – MPI non blocking
Update bulk
Wait exchanges – MPI wait

To achieve full overlapping, the bulk updating time must be 
larger than the communication time

Using MIC (native), sometimes the final performances are 
far from optimal

MPI optimizations: FDTD/2

HPCS 2014



  

MIC-Offload pattern (similar to multi-GPU approach)
Update boundary
Update bulk – asynchronous  (non blocking)
Exchange ghost – MPI blocking
Wait bulk update

#pragma offload target(mic:0) … async(a)

{

<code to be offloaded>

}

CPU operations (e.g. MPI calls)

#pragma offload_wait(a)

MPI optimizations: FDTD/3

HPCS 2014



  

Scaling results from Heisenberg Spin Glass code
Strong scaling for native/offload and sync/async versions

MPI optimizations: HSG

HPCS 2014

#MICS Native-
Sync

Native-
Async

Offload-
Sync

Offload-
Async

1 0.709 0.717 1.049 1.078

2 0.484 0.431 0.558 0.527

4 0.445 0.325 0.335 0.281

8 0.376 0.246 0.219 0.167

16 0.343 0.197 0.154 0.113

Weak scaling comparison with other architectures
#Procs Size CPU GPU MIC-n MIC-o

1 256 3.73 0.67 0.78 1.34

8 512 0.48 0.068 0.25 0.17

Efficiency 96.2% 123% 39.9% 100%


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

