

Overview of Intel Xeon Phi

F. Salvadore - Cineca

Contents

- (1) Overview of Intel Xeon Phi
- (2) Programming models:
 - (a) native mode
 - (b) offload mode
- (3) Libraries: MKL
- (4) Optimization hints

Trends: transistors

Trends: clock rates

Trends: cores and threads

Trends: summarizing...

- ▶ The number of transistors increases
- The power consumption must not increase
- The density cannot increase on a single chip

Solution

Increase the number of cores

Xeon Phi very basic features

Let me introduce you

What is Xeon Phi?

- >7100 / 5100 / 3100 Series available
- ►5110P:
 - Intel Xeon Phi clock: 1053 MHz
 - •60 cores in-order
 - -~ 1 TFlops/s DP peak performance (2 Tflops SP)
 - •4 hardware threads per core
 - •8 GB DDR5 memory
 - 512-bit SIMD vectors (32 registers)
 - Fully-coherent L1 and L2 caches
 - PCle bus (rev. 2.0)
 - Max Memory bandwidth (theoretical) 320 GB/s
 - Max TDP: 225 W

MIC vs GPU *naïve* comparison

- ► The comparison is naïve
 - •MICs and GPUs are two different types of devices!

System	K20s	5110P
# cores	2496	60 (*4)
Memory size	5 GB	8 GB
Peak performance (SP)	3.52 TFlops	2 TFlops
Peak performance (DP)	1.17 TFlops	1 TFlops
Clock rate	0.706 GHz	1.053 GHz
Memory bandwidth	208 GB/s (ECC off)	320 GB/s

Terminology

- MIC = Many Integrated Cores is the name of the architecture
- Xeon Phi = Commercial name of the Intel product based on the MIC architecture
- ► Knight's corner, Knight's landing, Knight's ferry are development names of MIC architectures
- We will oftern refer to the CPU as HOST and Xeon Phi as DEVICE

Is it an accelerator?

- ►YES: It can be used to "accelerate" hot-spots of the code that are highly parallel and computationally extensive
- ▶ In this sense, it works alongside the CPU
- It can be used as an accelerator using the "offload" programming model
- ► An important bottleneck is represented by the communication between host and device (through PCIe)
- Under this respect, it is very similar to a GPU

Is it an accelerator? / 2

- NOT ONLY: the Intel Xeon Phi can behave as a many-core X86 node.
 - Code can be compiled and run "natively" on the Xeon
 Phi platform using MPI + OpenMP
- The bottleneck is the scalability of the code
 - Amdahl Law
- ► Under this respect, the Xeon Phi is completely different from a GPU
 - •This is way we often call the Xeon Phi "co-processor" rather than "accelerator"

Many-core performances

- Instruction Pipelining
 - Two independent pipelines arbitrarily known as the U and V pipelines
 - (only) 5 stages to cope with a reduced clock rate, e.g.
 compared to the Pentium 20 stages
 - In-order instruction execution
- Manycore architecture
 - Homogeneous
 - •4 hardware threads per core

- Interconnect: bidirectional ring topology
 - All the cores talk to one another through a bidirectional interconnect
 - The cores also access the data and code residing in the main memory through the ring connecting the cores to memory controller
- ► Given eight memory controllers with two GDDR5 channels running at 5.5 GT/s
 - Aggregate Memory Bandwidth = 8 memory controllers ×
 2 channels × 5.5 GT/s × 4 bytes/transfer = 352 GB/s
- System interconnect
 - Xeon Phi are often placed on PCIe slots to work with the host processors

- Cache:
 - L1: 8-ways set-associative 32-kB instruction and 32-kB data
 - L1 access time: 3 cycles
 - L2: 8-way set associative and 512 kB in size (unified)Interconnect: bidirectional ring topology
- TLB cache:
 - L1 data TLB supports three page sizes: 4 kB, 64 kB, and 2 MB
 - L2 TLB
 - •If one misses L1 and also misses L2 TLB, one has to walk four levels of page table, which is pretty expensive

- The VPU (vector processing unit) implements a novel instruction set architecture (ISA), with 218 new instructions compared with those implemented in the Xeon family of SIMD instruction sets.
- The VPU is fully pipelined and can execute most instructions with four-cycle latency and single-cycle throughput.
- ► Each vector can contain 16 single-precision floats or 32-bit integer elements or eight 64-bit integer or double-precision floating point elements.

- Each VPU instruction passes through one or more of the following five pipelines to completion:
 - Double-precision (DP) pipeline: Used to execute float64 arithmetic, conversion from float64 to float32, and DP-compare instructions.
 - Single-precision (SP) pipeline: Executes most of the instructions including 64-bit integer loads. This includes float32/int32 arithmetic and logical operations, shuffle/broadcast, loads including loadunpack, type conversions from float32/int32 pipelines, extended math unit (EMU) transcendental instructions, int64 loads, int64/float64 logical, and other instructions.
 - Mask pipeline: Executes mask instructions with one-cycle latencies.
 - Store pipeline: Executes the vector store operations.
 - Scatter/gather pipeline: Executes the vector register read/writes from sparse memory locations.
- Mixing SP and DP computations is expensive!

Architecture sketch/1

Architecture sketch/2

