
Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Random Number Generation Tools for
Distributed Simulation on Modern HPC

Architectures

Prof. Michael Mascagni

Department of Computer Science
Department of Mathematics

Department of Scientific Computing
Graduate Program in Molecular Biophysics

Florida State University, Tallahassee, FL 32306 USA
AND

Applied and Computational Mathematics Division, ITL
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA

E-mail: mascagni@fsu.edu or mascagni@math.ethz.ch
or mascagni@nist.gov

URL: http://www.cs.fsu.edu/∼mascagni

Research supported by ARO, DOE, NASA, NATO, NIST, and NSF
with equipment donated by Intel and Nvidia

HPCS Plenary Talk: July 25, 2014

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Outline of the Talk

Introduction
Random Numbers and Monte Carlo
Parallelization of Random Number Generators

Parameterization
Cycle Splitting

Parallel Neutronics: A Difficult Example

SPRNG
An Overview of SPRNG
OpenMP for SPRNG

Cycle Splitting in SPRNG for OpenMP
Results

SPRNG for the GPU
Lagged-Fibonacci Generators
Parallelization Schemes
LFGs for GPUs
Results

Conclusions and Future Work

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Random Numbers and Monte Carlo

Monte Carlo Methods: Numerical Experimental that
Use Random Numbers

I A Monte Carlo method is any process that consumes random
numbers

1. Each calculation is a numerical experiment
I Subject to known and unknown sources of error
I Should be reproducible by peers
I Should be easy to run anew with results that can be combined to

reduce the variance

2. Sources of errors must be controllable/isolatable
I Programming/science errors under your control
I Make possible RNG errors approachable

3. Reproducibility
I Must be able to rerun a calculation with the same numbers
I Across different machines (modulo arithmetic issues)
I Parallel and distributed computers?

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Random Numbers and Monte Carlo

What are Random Numbers Used For?
I There are many types of random numbers

1. “Real" random numbers: a mathematical idealization
2. Random numbers based on a “physical source” of randomness
3. Computational Random numbers
1. Pseudorandom numbers: deterministic sequence that passes tests

of randomness
2. Cryptographic numbers: totally unpredictable
3. Quasirandom numbers: very uniform points

Cryptographic
 numbers

Pseudorandom
 numbers

Quasirandom
 numbers

Uniformity

UnpredictabilityIndependence

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Parallelization of Random Number Generators

Parallelization of RNGs

I Because pseudorandom number are generated deterministically
and have a finite state (seed), random number streams are
periodic

I With different utilization of cycle structure, the parallelization of
RNGs permits two general approaches

1. With a single full-period cycle one has to use cycle splitting
2. With multiple full-period cycles one can parameterize a generator

2.1 One can parameterize the seed: lagged-Fibonacci generators
2.2 One can vary a parameter in the generator’s defining relation: the

multiplier in a linear congruential generator (not discussed further)

I A new approach, which has been extensively used with
quasirandom numbers is to use many different scramblers of a
single pseudorandom stream

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Parallelization of Random Number Generators

Possible Parametrization

I Most of the RNGs have multiple cycles (not necessarily all of
them being the same size)

I There are two main choices for how to parameterize
1. Use different types of generators for each computational process
2. Use same generators with different sets of parameters for each

computational process
I Finding good sets of parameters is the most important issue in

parametrization
I Parameterized sequences are difficult to re-serialize

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Parallelization of Random Number Generators

Cycle Splitting

I Reasons why you cannot use parameterization
1. Not every generator has multiple full-period cycles
2. Some applications need (or are used to getting) random numbers

from the same cycle
I Cycle splitting distributed numbers from a single cycle via

substreams to different computational process
I One uses the same generator and same parameter for each

computational process but with a different starting point or
decimation

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Parallelization of Random Number Generators

Cycle Splitting

I There are generally two ways of sharing one threads across
several computational processes

I Blocking: Starting points are spaced far apart, using different
sections of the entire cycle

I If a RNG sequence is given by x0, x1, x2 . . . , and the block size is
B: a blocking scheme assigns the i th computational process to
xiB, xiB+1, xiB+2, . . .

I Leap-frogging: the numbers in the computational process have
the same interval in the original cycle

I If the total number of computational processes is t , the
leap-frogging scheme will assign the i th computational process
to xi , xi+t , xi+2t , . . .

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Parallelization of Random Number Generators

Cycle Splitting Illustration

Parallelization of one level

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Parallelization of Random Number Generators

Cycle Splitting

I The major concern for blocking is overlapping between
substreams

I Leap-frogging is decimation and the numbers produced actually
satisfy a different recurrence

I Both need fast leap-ahead algorithms allow efficient
implementation

1. A fast leap-ahead algorithm allows leaping n steps forward with
O(log2 n) work compared to the RNGs single step

2. Fast leap-ahead algorithms vary from generator to generator

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Introduction

Parallel Neutronics: A Difficult Example

Parallel Neutronics: A Difficult Example

1. The structure of parallel neutronics
I Use a parallel queue to hold unfinished work
I Each processor follows a distinct neutron
I Fission event places a new neutron(s) in queue with initial

conditions

2. Problems and solutions
I Reproducibility: each neutron is queued with a new generator (and

with the next generator)
I Using the binary tree mapping prevents generator reuse, even with

extensive branching
I A global seed reorders the generators to obtain a statistically

significant new but reproducible result

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

An Overview of SPRNG

Many Parameterized Streams Facilitate
Implementation/Use

1. Advantages of using parameterized generators
I Each unique parameter value gives an “independent” stream
I Each stream is uniquely numbered
I Numbering allows for absolute reproducibility, even with MIMD

queuing
I Effective serial implementation + enumeration yield a portable

scalable implementation
I Provides theoretical testing basis

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

An Overview of SPRNG

Many Parameterized Streams Facilitate
Implementation/Use

2. Implementation details
I Generators mapped canonically to a binary tree
I Extended seed data structure contains current seed and next

generator
I Spawning uses new next generator as starting point: assures no

reuse of generators

3. All these ideas in the Scalable Parallel Random Number
Generators (SPRNG) library: http://sprng.org

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

An Overview of SPRNG

Many Different Generators and A Unified Interface

1. Advantages of having more than one generator
I An application exists that stumbles on a given generator
I Generators based on different recursions allow comparison to rule

out spurious results
I Makes the generators real experimental tools

2. Two interfaces to the SPRNG library: simple and default
I Initialization returns a pointer to the generator state:
init_SPRNG()

I Single call for new random number: SPRNG()
I Generator type chosen with parameters in init_SPRNG()
I Makes changing generator very easy
I Can use more than one generator type in code
I Parallel structure is extensible to new generators through dummy

routines

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

An Overview of SPRNG

New Directions for SPRNG

I SPRNG was originally designed for distributed-memory
multiprocessors

I HPC architectures are increasingly based on commodity chips
with architectural variations

1. Microprocessors with more than one processor core (multicore)
2. The IBM cell processor (not very successful even though it was in

the Sony Playstation)
3. Microprocessors with accelerators, most popular being GPUs

(video games)
4. Intel Phi

I We will consider only two of these:
1. Multicore support using OpenMP
2. GPU support using CUDA (Nvidia) and/or OpenCL (standard)
3. Eventually OpenACC for GPU support?

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

An Overview of SPRNG

New Directions for SPRNG

I SPRNG currently uses independent full-period cycles for each
processor

1. Organizes the independent use of generators without
communication

2. Permits reproducibility
3. Initialization of new full-period generators is slow for some

generators
I A possible solution

1. Keep the independent full-period cycles for “top-level" generators
2. Within these (multicore processor/GPU) use cycle splitting to

service threads
3. Precomputed parameter sets to improve initialization and

branching performance

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

SPRNG for Multicore

I Wide-spread availability of microprocessors that have multiple
processor cores

1. This is true for all the major laptop/desktop microprocessors
2. It is also true for Arm-based microprocessors, and most mobile

processors
I Monte Carlo methods are highly suitable for efficient parallel

execution (did you attend my tutorial?)
I It is important for enabling Monte Carlo on multicore

architectures that we have RNG support as well
I We have chosen to do this by creating OpenMP-SPRNG to

support using SPRNG via the ubiquitous OpenMP paradigm
I OpenMP is implemented through compiler directives and is

support by most C/C++ and FORTRAN compilers

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

SPRNG is Already Thread Safe

I SPRNG code was originally designed to be thread safe
I This originally permitted multi-threaded implementations using

such tools as pthreads
I Common solutions using pthreads synchronization – critical

section, monitors, locking, barriers, · · ·
I SPRNG should not use those techniques, as synchronization

harms performance and scalability
I Our solution is complete separation: one thread gets one

substream, i.e. the data resource of each substream is not
shared by threads

I Substreams identify threads using the OpenMP Function:
omp_get_thread_num

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

Class Structure

I Here is the class stucture that was imposed on SPRNG as a
results of OpenMP-SPRNG

OMPSprng

CMRG

Sprng

LCG LCG64 LFG MLFG PMLCG

<<bind>>

Figure: Static Class Structure

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

Delegation Sequence

OMPSprng

omp_get_thread_num

search pool LCG

get_rn_int()

Figure: Delegation Sequence

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

Cycle Splitting in SPRNG for OpenMP

I Cycle splitting capability is added for SPRNG to support OpenMP
I Provides parallelization for applications with specific substream

requirements
I Cycle splitting schemes were added to parallel and regular

random number generator classes
I Both blocking and leap-frogging are supported

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

Time For Generating 2.048× 109 Random Numbers

CPU Memory Compiler OS
Intel(R) Xeon(R) E7340 2.4GHz 128GB g++ 4.1.2 Linux 2.6.18-194.11.1.e15

93.30	

43.88	

27.46	

64.50	 64.21	 65.41	

14.22	 8.57	 6.38	 11.71	 14.64	 12.13	

14.19	
8.57	 6.31	

11.61	 14.19	 12.03	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

LFG	 LCG	 LCG64	 CMRG	 MLFG	 PMLCG	

serial	 sta;c	 dynamic	

Figure: Time for generating random numbers, 8 threads

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

Relative Error of Integrating Gaussian Function By
LCGs

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

0.007	

0.008	

0.009	

1	 2	 4	 8	 16	

Gaussian	

block	

leap	

para	

Figure: 20 Dimensions, with different threads

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

OpenMP for SPRNG

Reproducibility

Schedule Thread Safe Reproducibility
static Yes Yes

dynamic Yes No
guided Yes No
runtime Yes Maybe

auto Yes No

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

The CUDA Programming Model

I There are currently three paradigms that support Graphical
Processing Unit (GPU) programming

1. CUDA (Compute Unified Device Architecture) is a parallel
programming model created by NVIDIA

2. OpenCL is a standard to support accelerator programming that
was developed by a consortium (platform agnostic)

3. OpenACC is, like OpenMP, a compiler directive-based approach
and will become part of OpenMP 4.0

I We model the CPU as host and the GPU as device
I Three level of parallelism: grid, block, and thread
I Different memory size and usage: global memory, shared

memory, local memory, and texture memory
I Functions are called by using: func«<#blocks, #threads»>(),

blocks and threads are used
I The GPU can be thought of as a Single Instruction Multiple Data

(SIMD) processor

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Lagged-Fibonacci Generators for GPUs

I General form:

xn = xn−k � xn−` (mod 2b), ` > k

I Three types of Lagged-Fibonacci Generators (LFGs) are often
defined, but we are interested only in the last two

1. � = ⊕: These are an efficient implementation of b bitwise
shift-register sequences stacked one upon the other

2. � = +: Additive LFGs (ALFGs) are simple, easy to implement,
efficient, and are linear generalizations of shift-register sequences

3. � = ×: Multiplicative LFGs (MLFGs) are not linear generators,
thus they have better statistical properties

I ALFGs and MLFGs are easy to parameterize as we will see

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

The Cycle Structure of LFGs

I LFGs have multiple maximal-period cycles
I With proper initialization, the generator can be put all possible

(2(`−1)(b−1)) maximal-period cycles

m.s.b l.s.b.
bb−1 bb−2 . . . b1 b0

� � . . . 0 0 xl−1
0 � . . . � 0 xl−2
...

...
...

...
...

...
� 0 . . . � 0 x1
� � . . . � 1 x0

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Conversions: ALFG ⇐⇒ MLFG
I If one MLFG xi is initially even, eventually all the outputs will be

even, so we use only odds
I Odd integers modulo a power-of-two can be represented as

xn = ±1× 3odd (mod 2b)

I From ALFG to MLFG we can use this fact directly

yn = 3xn−k × 3xn−` = 3xn−k+xn−`

I From MLFG to ALFG we have to use discrete logarithm modulo
a power-of-two:

xn = (−1)yn 3zn (mod 2b)

where yn and zn are:

yn = yn−k + yn−` (mod 2)

zn = zn−k + zn−` (mod 2b−2)

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

The Special Structure of LFGs

I Not all numbers are used in the LFG state array
I If we closely examine the equation:

xn = xn−k � xn−` (mod 2b), ` > k

I k , the small gap, numbers can be generated simultaneously
I This allows for efficient k -fold vectorization for the SIMD GPU

architecture
I This has not been previously utilized to implement vectorization

for LFG generation

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Fast Leap-Ahead Algorithms for LFGs to Support
Cycle Splitting

I Can use polynomial arithmetic with fast multiply-square algorithm
for computing a monomial modulo a polynomial

I Xn = AnX0 mod 2b with fast multiply-square algorithm

A =

0 0 0 . . . 0 1 0 . . . 0 0 1
1 0 0 . . . 0 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0 . . . 0 0 0
0 0 0 . . . 1 0 0 . . . 0 0 0
0 0 0 . . . 0 1 0 . . . 0 0 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 0 . . . 1 0 0
0 0 0 . . . 0 0 0 . . . 0 1 0

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Parallelization Schemes

I Less than the theoretical maximum number of schemes of 5 are
used because of memory restrictions

I For host APIs, three schemes are used: pure parameterization,
parameterization + leap-frogging, and parameterization +
original order

I For device APIs, two schemes are used: pure parameterization,
parameterization + leap-frogging

I Pure parameterization uses an independent cycle for each
thread

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Parallelization Diagram

Parallelization Using Two Levels: Parameterization + Leap-Frogging

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Why Blocking is Not Used

I Blocking is a compromised version of the original order
I Blocking suffers from overlapping and inability of adding new

threads, with a fixed block size
I Blocking also needs separate state arrays for each thread, which

is gives it no advantage over parameterization in memory usage

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Design of LFGs

The implementation of LFGs for GPU

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

The Host API

I Generate a large block of numbers and leave it in global memory
I alfg_leap(), alfg_original(), and alfg_para() are

functions for different schemes of ALFGs
I mlfg_leap(), mlfg_original(), and mlfg_para() are

functions for different schemes of MLFGs
I Initialization is done within each function

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

The Device API

I Initialization function is decoupled from the generation function
I lfg_init() initializes state arrays for different blocks
I lfg_update() calculates new seeds and stores them in the

aux array
I lfg_arrayswitch() switches the state array and aux array
I lfg() read seeds
I No dirty reads are possible
I This is very memory efficient compared to all CURAND (Nvidia

CUda RANDom) generators
I The generator state can be as small as 34 64-bit integers,

compared to 1024 for MTGP32 from CURAND

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Scalability

The Scalability of ALFGs and MLFGs Are Similar

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Speed

I The speed of ALFGs and MLFGs are similar using 16 blocks and
256 threads

I MTGP is faster because it uses precomputed parameters,
therefore, the costly initialization stage is bypassed

I Precomputed parameter sets will be implemented in the next
stage for the LFGs for SPRNG

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

The Speed of Computing Random Numbers

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

ALFG with top 32-bit

========= Summary r e s u l t s o f BigCrush =========

Version : TestU01 1 .2 .3
Generator : a l fg top32
Number o f s t a t i s t i c s : 160
To ta l CPU time : 04:37:02.61
The f o l l o w i n g t e s t s gave p−values outs ide [0 .001 , 0 .9990] :
(eps means a value < 1.0e−300):
(eps1 means a value < 1.0e−15):

Test p−value
−−
36 Gap, r = 0 eps
37 Gap, r = 20 eps
−−
A l l o ther t e s t s were passed

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Statistical Results for LFGs

ALFG with the low 32-bits

========= Summary r e s u l t s o f BigCrush =========

Version : TestU01 1 .2 .3
Generator : a l fg low32
Number o f s t a t i s t i c s : 160
To ta l CPU time : 04:36:51.86
The f o l l o w i n g t e s t s gave p−values outs ide [0 .001 , 0 .9990] :
(eps means a value < 1.0e−300):
(eps1 means a value < 1.0e−15):

Test p−value
−−
12 Co l l i s ionOver , t = 21 1 − 5.8e−7
36 Gap, r = 0 eps
37 Gap, r = 20 eps
−−
A l l o ther t e s t s were passed

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Statistical Results for LFGs

ALFG with the top 32-bits with decimation by 8

========= Summary r e s u l t s o f BigCrush =========

Version : TestU01 1 .2 .3
Generator : a l fgtop32_dec8
Number o f s t a t i s t i c s : 160
To ta l CPU time : 09:42:21.15

A l l t e s t s were passed

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

Statistical Results for LFGs

MLFG with the top 32-bits

========= Summary r e s u l t s o f BigCrush =========

Version : TestU01 1 .2 .3
Generator : mlfgtop32
Number o f s t a t i s t i c s : 160
To ta l CPU time : 06:21:20.06
The f o l l o w i n g t e s t s gave p−values outs ide [0 .001 , 0 .9990] :
(eps means a value < 1.0e−300):
(eps1 means a value < 1.0e−15):

Test p−value
−−
73 GCD 2.5e−4
−−
A l l o ther t e s t s were passed

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

SPRNG

SPRNG for the GPU

The Reason Not to Rely on Statistical Tests

MLFG with the top 32-bits plus 1

========= Summary r e s u l t s o f BigCrush =========

Version : TestU01 1 .2 .3
Generator : ml fgtop32plus1
Number o f s t a t i s t i c s : 160
To ta l CPU time : 06:24:31.70

A l l t e s t s were passed

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Conclusions and Future Work

Experience with SPRNG for Multicore via OpenMP

I We have implemented an OpenMP version of SPRNG for
multicore using these ideas

I OpenMP is now built into the main compilers, so it is easy to
access

I Our experience has been
1. Works as expected giving one access to high-quality, fast, and well

tested RNGs on all the cores
2. Permits forensic reproducibility: must know the number of threads

that were used
3. Near perfect parallelization is expected and seen
4. Performance comparison with independent spawning vs. cycle

splitting is not as dramatic as expected
I Backward (forensic) reproducibility is something that we can

provide, but forward reproducibility is trickier
I This is work with Drs. Haohai Yu (Microsoft) and Dr. Yue Qiu

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Conclusions and Future Work

Experience with SPRNG on GPUs via CUDA

I SPRNG for the GPU is simple in principal, but harder for users to
effectively structure efficient code

1. The same technique that was used for multicore work for GPUs
with many of the same issues

2. The concept of reproducibility has to be modified as well
3. Successful exploitation of GPU threads requires that SPRNG calls

be made to insure that the data and the execution are on the GPU,
in our case the “Device API"

I Software development may not be the hardest aspect of this
work for a complete version of SPRNG for the GPU

1. Clear documentation with descriptions of common coding errors
will be essential for success

2. An extensive collection of examples will be necessary to provide
most users with code close to their own to help them use the GPU
efficiently for Monte Carlo

I This is work with Drs. Timothy Andersen (Daniel H. Wagner
Associates) and Dr. Yue Qiu

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Conclusions and Future Work

Future SPRNG Work

I SPRNG for use on Intel Phi
I An MS student, Rakesh Rajappa is doing some work on the Phi
I Creating a clean version of the SPRNG v4.4 code is taking place

this summer with doctoral student, John Thrasher
I Making the SPRNG website more user friendly
I A comprehensive version of SPRNG for modern HPC

architectures
1. A free version for academic/government/nonprofit users
2. A licensed version to fund long-term support from for profit users

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Conclusions and Future Work

Bibliography

[M. Mascagni, T. Anderson, H. Yu and Y. Qiu (2014)] Papers on
SPRNG for Multicore and GPU 1 submitted, 3 in preparation

[H. Chi, M. Mascagni and T. Warnock (2005)] On the Optimal
Halton Sequence, Mathematics and Computers in Simulation,
70(1): 9–21.

[M. Mascagni and H. Chi (2004)] Parallel Linear Congruential
Generators with Sophie-Germain Moduli, Parallel Computing, 30:
1217–1231.

[M. Mascagni and A. Srinivasan (2004)] Parameterizing Parallel
Multiplicative Lagged-Fibonacci Generators, Parallel Computing,
30: 899–916.

[M. Mascagni and A. Srinivasan (2000)] Algorithm 806: SPRNG:
A Scalable Library for Pseudorandom Number Generation, ACM
Transactions on Mathematical Software, 26: 436–461.

Random Number Generation Tools for Distributed Simulation on Modern HPC Architectures

Conclusions and Future Work

c© Michael Mascagni, 2014

	Introduction
	Random Numbers and Monte Carlo
	Parallelization of Random Number Generators
	Parallel Neutronics: A Difficult Example

	SPRNG
	An Overview of SPRNG
	OpenMP for SPRNG
	SPRNG for the GPU

	Conclusions and Future Work

